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Abstract 

There have been significant efforts to develop cognitively plausible software 
architectures of human information processing in the last three decades. This report 
summarizes several architectures that continue to be developed. The specific type of 
cognitive models developed are known as production system architectures, which refers 
to the characterization of knowledge in terms of procedural (“how-to” knowledge) 
condition-action relationships consisting of declarative (“what” or factual) knowledge. 
To illustrate the ability for these models to instantiate human cognitive performance, a 
simulation using ACT-R (Adaptive Control of Thought - Rational) was implemented for 
a supervisory control task. Correlations between simulated and human learning of the 
task were measured and yielded correlations as high as 0.93. 





1. Introduction and Background 

A relatively small but active area of research exists in the cognitive science arena that is 
often referred to as production system or rule-based modeling (Laird, Newell, and 
Rosenbloom, 1987; Just and Carpenter, 1992; Kieras and Meyer, 1997; Anderson and 
Lebiere, 1998). This report summarizesf production system models and reviews the 
effectiveness of a production system that models a supervisory control task. Model 
summaries include some comments concerning their ability to account for knowledge 
degradation (Brannon, 2001; Brannon and Koubek, 2001) or, in other words, the ability 
to account for mechanisms that could lead to forgetting or a reduced ability to retrieve 
knowledge from memory. 

One early hurdle in understanding production systems is simply becoming familiar with 
the unconventional terms associated with this area of research. A logical starting point is 
with the term “production.” Production comes from a fundamental assumption that 
human cognitive behavior is goal oriented and can be characterized in terms of 
conditionlaction relationships. Such If-Then rules are known as “productions” or 
“production rules.” A “production system” is an organized collection of If-Then rules 
representative of human information processing. 

Knowledge has been characterized in a variety of ways in psychology. Production 
systems categorize knowledge in two dimensions, declarative and procedural. 
Declarative knowledge represents facts (the “what” knowledge) such as phone numbers 
or state capitals. Procedural knowledge is the “how to” knowledge integrating 
declarative knowledge into productions. Examples of procedural knowledge include 
mathematics or monitoring a nuclear power plant. 

The most common motive behind the development of production system models is for 
the validation of cognitive theories. The application of production systems as subsystems 
in the design process is rare and only beginning to be explored (Brannon, 2001). 

2. Production System Modeling of Cognition 

Several production system architectures will be reviewed and are summarized in Table I .  

While many dimensions could be depicted in the rows, the sample topics were chosen 
with an emphasis on knowledge dynamics. 

Before going into detail concerning production systems, it should be noted that several 
models of cognition exist other than production system architectures. Examples include 



Meta Trouble Shooter (Meta-TS; Ram, Narayanan, and Cox, 1995), and the Operator 
Function Model (OFM; Mitchell, 1987). Tools such as the OFM and Meta-TS place 
more emphasis on actions than atomic levels of cognition. Mitchell, Rubin, and 
Govindaraj (1986), for example, notes that the OFM is not intended to model the inner 
workings of the mind. In contrast, production systems begin with a representation of 
cognitive processes and extrapolate the mechanisms to external tasks. 

Table 1. Production System Architectures of Cognition 

2.1. 3CAPS 

Just and Carpenter (1992) developed the Concurrent, Capacity-constrained, Activation- 
based, Production System (3CAPS) for modeling language comprehension and problem 
solving. A central feature of the model is the representation of individual differences in 
working memory capacity. The greater the working memory capacity is, the greater is 
the ability to comprehend language. Working memory in 3CAPS is organized in a 
connectionist network. Knowledge is measured by the level of activation, and production 
firings control the flow of activation. Typical means of validating the model include 
reading tasks where human data are compared with 3CAPS data (Just and Carpenter, 
1992; Haarmann, Just, and Carpenter, 1997). . 
With regard to knowledge degradation mechanisms, 3CAPS uses a concept known as 
displacement. Displacement means that if the level of activation exceeds working 
memory capacity, knowledge is lost, and information-processing speeds decrease as wtll. 
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The older the knowledge, the more likely it will be forgotten should the level of 
activation exceed working memory capacity. 

The use of displacement as a general mechanism of knowledge degradation has been 
criticized. Nairne (1996: p. 77) argues that since working memory is not necessarily 
fixed, the displacement mechanism has “fallen out of favor” with researchers. However, 
if the working memory capacity of an individual is accounted for (as performed by Just 
and Carpenter, 1992), then displacement is a viable mechanism of interference. 

Although 3CAPS is a production system model, the emphasis upon language 
comprehension and individual differences in working memory capacity is not within the 
scope of the current research. This study intends to add insight to factors in interface 
design rather than the arrangement of lexical or syntactic information. Other models are 
more generalized accounts of human performance, which is better suited for this study. 

2.2. EPIC 

A tool developed for modeling human information processing is GOMS (Goals, 
Operators, Methods, and Selection Rules; Card, Moran, and Newell, 1983). GOMS 
provides a means of describing human performance through a sequence of operators 
(Eberts, 1994). Operators are cognitive, perceptual, or motor acts that change the user’s 
mental state (Card, Moran, and Newell, 1983). EPIC (Executive Process Interactive 
Control; Meyer and Kieras, 1997a) is a production-system architecture that was built 
upon the GOMS framework. 

EPIC possesses several useful features. From an applied perspective, an attractive 
characteristic of EPIC is the computational modeling of multiple-task performance 
(Meyer and Kieras, 1997b). EPIC took an early lead in the effort to account for the 
relationship of sensory/perceptual processing and cognitive processing. Perceptual 
processors included in EPIC include visual sensory, visual perceptual, auditory 
perceptual, and tactile. EPIC also accounts for motor processing with manual motor, 
ocular motor, and vocal motor processors. EPIC primarily measures knowledge using 
factors such as reaction time. 

Unlike other production system models, EPIC does not provide mechanisms for learning 
and degradation. However, other production systems such as ACT-R have been 
augmented with EPIC-like perceptual motor characteristics, and one version is known as 
ACT-R/PM (perceptual motor; Byme, 2000). ACT-FUFM unites the human information 
processing strengths of EPIC with the learning mechanisms of ACT-R. 



2.3. SOAR 

From their inception, tools such as ACT-R (Anderson, 1982; Anderson, 1998) and SOAR 
(State, Operator, and Result; Laird, Newell, and Rosenbloom, 1987; Newell, 1990) have 
included mechanisms for knowledge acquisition. SOAR possesses a refined structure 
enabling knowledge acquisition and efficient information processing. All tasks are 
formulated in what is referred to as a “problem space” (Newell and Simon, 1972). 
Elements of decision making, for example, can include current states and means by 
which a desired state is reached. Goals are strictly generated through an automatic 
subgoaling mechanism. The subgoaling mechanism is a fundamental component of 
SOAR’S learning capability. SOAR stores long-term memory simply as productions, 
rather than distinguishing declarative and procedural knowledge. Long-term memory 
supports problem solving. For example, in decision making, a production can be recalled 
from long-term memory that helps to quickly make a choice among alternatives. 

SOAR primarily acquires knowledge through chunking. The learning process begins 
when SOAR is provided a task and chooses a problem space. Within the problem space, 
active operators can be chosen to change the current state to a desired state. If a unique 
activation cannot be derived, SOAR has reached an impasse. Subgoals are then 
automatically generated to resolve the impasse. If the impasse is still not resolved, more 
subgoals are generated until the impasse is resolved. The results are permanently cached 
as productions (analogous to “chunking” in human cognition). These productions store 
the means by which the impasse was resolved. Therefore, when the same goal is set in 
the future, the stored production fires without the need for generating subgoals. This 
results in more efficient performance. 

The refined structure of SOAR has enabled extensive applications for design and 
validation (Rosenbloom, Laird, and Newell, 1993; Pew and Mavor, 1998). Although the 
simplified nature is advantageous from an applied standpoint, this limits the scope of 
cognitive variables that can be computationally modeled (Anderson, 1993). Newell 
(1990: p. 309) has conceded this point, stating that “the assertion that chunking is a 
sufficient mechanism should be considered a speculative and a priori unlikely 
hypothesis.” 

Koubek et al. (1999) details multiple variables associated with learning. To model 
cognition adequately, computational models must explore multiple mechanisms of 
learning. The most active production system that has made progress in this respect is 
ACT-R. 
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2.4. ACT-R 

ACT-R (Adaptive Control of Thought -Rational; Anderson, 1993; Anderson and Lebiere 
1998) has a rich history beginning with an early architecture known as HAM (Human 
Associative Memory; Anderson and Bower, 1973). By 1976, Anderson had expanded 
the focus of his research from memory to include learning in establishing ACT. 
Meanwhile computational models accompanied the theoretical underpinnings to simulate 
cognition. The computational models included versions from ACTA to ACTE. Further 
refinement led to the development of ACT* (Anderson, 1982). Although the learning 
mechanism Anderson refers to as “analogy” is mentioned, the mechanism did not really 
fit into ACT*. Furthermore, the learning mechanisms that were included in ACT* were 
difficult to support empirically. As a result of these limitations, ACT-R 2.0 was 
developed (Anderson, 1993). Further enhancements including more powerful declarative 
representations and more stable mechanisms for procedural knowledge were added to 
ACT-R 4.0 (Anderson and Lebiere, 1998). 

The basic structure of a production in ACT-R consists of three stages: the goal condition, 
chunk retrieval, and goal transformation. The ACT-R process is summarized in Figure 1. 
The three stages are depicted with their respective elements. Goals are organized in a 
stack. The term “stack” is appropriate because of the first in, last out (FILO) 
organization of goals in ACT-R. The process initiates with a goal being pushed (lower 
left-hand comer; “Start Cycle with Goal”). This tells ACT-R to focus its attention on a 
specific goal. Once a goal is chosen, productions are derived from the general knowledge 
base that match the goal. If there are no productions that match the goal, the goal is 
“popped” with failure. To pop a goal is to remove it from the focus of ACT-R’s 
attention. As a result of “failure,” ACT-R cannot currently achieve the goal, and this 
typically results in the return to the higher-level goal that set it. 

Normally at least one production is available, and if so, productions are ranked based on 
their expected gain (E). The following is the formula for expected gain: 

E = P G - C  

In a sense, this is the difference of benefit (PG) and cost (C). P is the probability that the 
goal will be achieved if that production rule is chosen. P is derived from parameters 
associated with the probability of successful execution of the production and the 
likelihood the related goal will be achieved should the production be executed 
successfully. 





. 
c 

L 

The parameter G is defined as the value of the goal. The calculation of G is subjective 
and is related to the time ACT-R should be interested in achieving the goal. Anderson 
and Lebiere (1998: p. 63) admit ACT-R has “little to say” with regards to the initial value 
of G. However, once experience accrues, G can play a greater role in the expected gain 
formula. For example, one of the outcomes of a production is the generation of subgoals. 
It is possible that deeper and deeper levels of subgoals are created, and as these levels 
grow deeper, the goal becomes associated with cumbersome requirements to achieve the 
goal. Consequently, the parameter G decreases, thereby decreasing the overall expected 
gain (E) of the top goal. Efforts to quantify supporting parameters exist but are in early 
stages (Belavkin and Ritter, 2000). 

When a particular production is chosen, there is an associated cost (C) of achieving the 
goal. Cost is derived from factors such as the expected effort. The time needed to 
retrieve declarative knowledge and actual performance times are used to determine the 
expected effort. Other subsymbolic variables used to derive cost include prior successes 
or failures. 

Returning to Figure 1, the expected gain helps to determine the optimum production that 
matches the goal. However, the highest ranked production is not necessarily the 
production that will be executed. If expected gain is less than zero (i.e., cost is greater 
than the benefit), the goal will pop with failure. Another context in which the highest 
ranked production will not be chosen is when there are difficulties associated with chunk 
retrieval. 

Productions consist of chunks and the likelihood of retrieving any chunk is determined, in 
part, by that chunk’s level of activation. A parameter fundamental to the calculation of 
activation is base-level activation. The recency and frequency with which a chunk is 
used determines the base level of activation. Strength of association between a chunk 
and possible elements (e.g., other chunks or productions) as well as attentional weighting 
are accounted for in the level of activation. Attentional weighting has been examined in 
relation to working memory capacity (Lovett, Reder, and Lebiere, 1999). 

If enough time passes, decay can decrease the level of activation to a point where the 
chunk can no longer be retrieved. ACT-R accounts for this with a threshold for level of 
activation. The probability of exceeding this threshold uses parameters including the 
level of activation, decay rate (typically set at O S ) ,  and a noise-control parameter. The 
noise parameter is derived from logistic distributions. 
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Most chunks do not perfectly match a production, and without an account for the degree 
with which the chunk matches and mismatches the production, there is a risk of 
commission error for chunks above the retrieval threshold. ACT-R provides what is 
called a “match score.” This score is simply the difference between the level of 
activation and the degree of mismatch. A chunk pattern, in the condition side of a 
production, contains slots, and the number of slots in which a chunk mismatches the 
desired chunk pattern determines the degree of mismatch. 

Once a chunk is retrieved, the production can be executed. Execution can result in one of 
the six following outcomes: 

1. No goal modification. No change in the goal stack. The purpose of this type of 
production is to generate an external action. As described by Anderson and Lebiere 
(1998), there has been active development of ACT-RIPM (Perceptual Motor; Byrne, 
2000) to account for interactions with an external environment. This version of 
ACT-R contains components and mechanisms similar to EPIC (Kieras, Wood, and 
Meyer, 1997). 

2. Goal modification. No change in the goal stack. In this case, the goal will be 
modified, but the current goal will remain the focus of attention upon completion of 
production firing. 

No goal modification. Push on stack (subgoal initiated). Often subgoals are 
needed to solve more specific problems. This type of production initiates a subgoal, 
which is similar to subgoaling in SOAR (Rosenbloom, Laird, and Newell, 1993). In 
ACT-R, once the subgoal is executed, the focus returns to the higher goal that called 
it without the goals being modified. An interesting difference worth noting between 
SOAR (Rosenbloom et al., 1993) and ACT-R is that SOAR stores the result of 
subgoals as productions whereas ACT-R stores results of subgoals in the form of 
chunks. 

3. 

4. Goal modification. Push on stack (subgoal initiated). A goal can be modified 
before a subgoal is initiated. When the subgoal is completed, it is sometimes useful 
to have a different goal to return to so that the same production rule is not fired 
repeatedly. 

5. No goal modification. Pop stack. It is useful to terminate a recursive loop of 
productions as in the case of adding columns in mathematics. There could be a 
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production called Do-Add-Stop that, once the condition is met, terminates the process 
by a pop of the goal stack. 

6. Goal modification. Pop stack. Often, in simple productions such as the addition of 
two numbers, this is a useful type of production. The slot for sum can be modified to 
the solution before the production pops and the focus returns to a higher goal. 

It is helpful to note that declarative memory receives the details of the outcomes (such as 
successes or failures). This is essential to the process of learning and more specifically 
production compilation. 

ACT-R contains two levels of processing and learning: symbolic and subsymbolic. With 
respect to learning, the symbolic level involves the acquisition of chunks and production 
rules. The subsymbolic level of learning involves the acquisition of parameters that 
govern the deployment of elements such as chunks and productions. The subsymbolic 
level also provides stochastic noise parameters. 

Production compilation, where new rules are generated, occurs at the symbolic level of 
ACT-R. Anderson and Lebiere (1998) note that production compilation was one of the 
last concepts to be included in their work. Furthermore, it is acknowledged that 
validation studies are still being conducted, and therefore, the production compilation 
mechanism of learning remains “somewhat tentative” @. 117). 

Currently, there are several modifications in the latest release of ACT-R (5.0; Lzbiere, 
2001). Additional standard features will include perceptual motor buffers derived from 
ACT-RiPM. The processing of information in the buffers will be parallel, while the 
cognitive elements of ACT-R will remain serial. The buffers will test conditions in the 
left-hand side (or the condition) of productions, and buffer actions will be available in the 
right-hand side as well. Buffer types include visual, manual, aural, vocal, goal, and 
action. 

Another significant development in version 5.0 is the refined nature of production 
compilation. Collapsing consecutive productions together can generate new productions. 
The resulting production is a specialized version of the parent productions. 

3. Demonstration 

A significant objective of this report is also to illustrate a computational representation of 
human performance on a resource management task. The task was chosen to demonstrate 
the ability to model a more real-world task relative to tasks typically modeled by tools 
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like ACT-R. As a result, the process by which procedural knowledge degrades can be 
better understood rather than treating the process as a “black box” with only input/output 
relationships. The computational framework chosen for this component of the research 
was ACT-R (v. 4.0) (Anderson and Lebiere, 1998). With early research dating back as 
far as Anderson and Bower (1972) and ever-expanding applications, ACT-R is arguably 
the most empirically rich and active computational model of cognition. 

3.1. Task and Model Formulation 

A vehicle for chosen for demonstrating a production-system model was the Multi- 
Attribute Task Battery (MATB; Comstock and Amegard, 1992). MATB (Figure 2) 
provides a suite of tasks analogous to real-world fields such as air-traffic control and 
waste-water management. The specific task in MATB used for this research was the 
Resource Management task. Note that during data collection involving human 
participants, all the other tasks (e.g., communication) were covered using a piece of 
cardboard, exposing only the resource management section of the MATB interface. 

4e N R U l  19.5 i C > i + >  a 600 

NRUP 110.0 
COMl 119.7 4 600 

cole 120.9 
6 689 
7 400 

Figure 2. MATB Visual Interface 

The goal of the Resource Management task is to maintain fluid levels in tanks at pre- 
specified levels. Participants toggle pumps ON/OFF to control flow in and out of the 
tanks. Pumps are labeled by numbers, which map to a corresponding key on the 
keyboard. For example, to turn on pump 1, subjects can press 1 on the keyboard. If the 
key is pressed again, the pump is turned off. 
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Since different pumps provide varying flow rates and certain tanks have certain target 
levels, participants must learn a pattern of actions to minimize the variability around the 
target level. An added source of complexity is that tanks A and B lose resources at a rate 
of 800 unitdminute. Although participants are informed of this factor, the information is 
not explicitly displayed on the interface. As participants’ procedural knowledge becomes 
refined, root mean square error (RMSE) was expected to decrease based on pilot studies. 

MATB allows quantitative information about performance to be easily collected. The 
software was modified so that every time a key was pressed (e.g., to turn a pump 
ON/OFF), a time stamp [time (seconds) into the trial], along with the current tank levels 
would be recorded in a separate data file. Additional modifications provided a redundant 
time stamp and tank-level recording every second. Such recording features allow 
calculations of RMSE and user input rate (inputdsecond). 

MATB is written in QuickBASIC (v. 4.5) and is less than 1 megabyte in size. MATB 
runs from a DOS prompt and is capable of being used on a 386 PC or higher. Output 
files are tab-delimited for easy transition to statistical analysis packages. 

With respect to performance measures, the primary measure was RMSE. Although 
participants are instructed to maintain a target tank level, pilot studies found that the 
actual mean would often deviate from the target level (typically higher). RMSE accounts 
for such a control bias unlike standard deviation. Therefore, RMSE is a more 
comprehensive measure of variability and performance. RMSE was calculated 
cumulatively (for each trial) and in segments (every 50 seconds in a 20-minute trial). 

3.2. Control Group Correlations 

With the disparity in results for human and ACT-R data found by Brannon (2001), it was 
thought useful to at least measure how well ACT-R predicted target task and control 
group trials. Each human control was paired with the ACT-R counterpart to measure 
their correlation. The correlations were measured with respect to RMSE (Table 2). 

Given the fact that there were two observations per treatment combination, each trial for 
the same treatment combination was averaged. For example, participant 3 had the same 
experimental condition as participant 32. Therefore, the RMSEs for each trial of 
participant 3 were averaged with each trial of participant 32. The same approach was 
used for human and ACT-R data, and the correlation was conducted across trials. This 
approach avoids pairing and ACT-R and human counterparts individually that could 
appear to be biased. Individual comparisons were calculated and plotted (Appendix). 
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Generally, the correlations are high, with the exception of 7 and 20. This effect will be 
addressed in the following discussion. 

Table 2. Control Group Correlations Between Human and ACT-R Data 

Sample Size 

4 and 26 

5 and 17 

I 0.92 

0.87 

7 and 20 9 0.25 

ACT-R models predicted human learning with a respectable degree of accuracy. In 
retrospect, ACT-R was coded with a higher level of noise than needed. Human learning 
was generally more consistent than expected. 

Figures 3 to 6 illustrate RMSE across trials. Although the grouping of participants 7 and 
20 reflects a relatively low correlation, Figure 6 illustrates ACT-R adhering to the more 
typical learning curve, while human performance reflects difficulty in improving 
performance. Ironically, for participant 5 (see plot in Appendix), the human adhered to a 
typical learning curve, and ACT-R deviated from the normal pattern. Both human and 
ACT-R deviations reflect difficulty in gaining task proficiency. 

c 
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Figure 3. RMSE by Trial for Partlcipants 3 and 32 
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Figure 4. RMSE by Trial for Participants 4 and 26 



Human VS. ACT-R (5 & 17, r = 0.87) 
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Figure 5. RMSE by Trial for Participants 5 and 17 
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Figure 6. RMSE by Trial for Participants 7 and 20 



4. Conclusion 

ACT-R successfully performed the resource management task and performed in a manner 
consistent with literature and the conceptual model. ACT-R remains a promising tool for 
the simulation and prediction of human cognitive performance. Finally, this simulation 
was useful in examining cognitive variables in an ecologically analogous supervisory 
control task. 

From a computational standpoint, this research explored new ways to utilize existing 
parameters within the ACT-R architecture. An even more complex and fertile area of 
research involves the need to understand effective means of integrating the parameters to 
further our understanding of how the parameters interact. 

Given that most real-world tasks are procedural in terms of knowledge structure rather 
than declarative, it is essential that research expand its investigation of procedural 
knowledge dynamics. While some common principles exist between declarative and 
procedural knowledge, it is proposed that significant differences exist with respect to 
their susceptibility to interference effects. The added dimensions of performance 
variability introduced by procedural knowledge are complex. 
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APPENDIX 

Subject-to-Subject Comparisons of Human and ACT-R (Control Group) Performance 
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